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Large language models generate plausible text responses to medical questions, but inaccurate
responses pose significant risks in medical decision-making. Grading LLM outputs to determine the
best model or answer is time-consuming and impractical in clinical settings; therefore, we introduce
EVAL (Expert-of-Experts Verification and Alignment) to streamline this process and enhance LLM
safety for upper gastrointestinal bleeding (UGIB). We evaluated OpenAI’s GPT-3.5/4/4o/o1-preview,
Anthropic’s Claude-3-Opus, Meta’s LLaMA-2 (7B/13B/70B), and Mistral AI’s Mixtral (7B) across 27
configurations, including zero-shot baseline, retrieval-augmented generation, and supervised fine-
tuning. EVAL uses similarity-based ranking and a reward model trained on human-graded responses
for rejection sampling. Among the employed similarity metrics, Fine-Tuned ColBERT achieved the
highest alignment with human performance across three separate datasets (ρ = 0.81–0.91). The
reward model replicated human grading with 87.9% of cases across temperature settings and
significantly improved accuracy through rejection sampling by 8.36% overall. EVAL offers scalable
potential to assess accuracy for high-stakes medical decision-making.

Large language models (LLMs) have demonstrated a remarkable ability
to generate relevant text in response to clinical questions1,2. However,
the inherent variability and occasional inaccuracy of these models can
limit their application in high-stakes situations such as clinical
decision-making in patient care3–8. The issue of Artificial Intelligence
(AI) safety becomes a critical concern when LLMs are used for medical
advice9, as preliminary studies have shown that these models may
generate inaccurate recommendations for patients and healthcare
providers in gastroenterology and hepatology10. Although techniques

such as few-shot prompting11, retrieval-augmented generation12, and
supervised fine-tuning have been employed to improve model perfor-
mance, the criteria to evaluate performance metrics (e.g., accuracy)
remain inconsistent across studies. Moreover, verifying model perfor-
mances is time and resource-intensive, requiring extensive manual
review from medical experts13. Ensuring AI safety in LLMs for medical
advice requires a clear definition of appropriate performance metrics,
which make it difficult to evaluate LLMs and establish an appropriate
regulatory framework14.
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In the context of generative AI safety, establishing a reliable ground
truth is essential. Evidence-based medicine (EBM) is the prevailing para-
digm for clinical practice to define a consensus for medical practice by
emphasizing systematic literature reviews and formal evidence-based
decision rules to inform clinical decision-making15. This approach has
been consolidated in systematic reviews, meta-analyses, and evidence
synthesis in clinical practice with an estimated number of over 2,700 pub-
lished clinical guidelines16. Within this framework, the accuracy of gen-
erative AI systems can be defined as the degree to which its outputs align
with the recommendations outlined in established clinical practice guide-
lines and disease-specific protocols.

Existing studies involving LLMs application in clinical practice seek to
pool the responses of board-certified clinical practitioners to crowd-source
the appropriate response to clinical questions. This process is time con-
suming, heterogeneous across practitioners, and may not reflect the best
specialized knowledge for evidence-based management of diseases. To
overcome these limitations, we define our reference standard using free-text
responses from lead or senior guideline authors - the so-called “expert-of-
experts”. These responses provide the elusive “golden labels” that can be
used to enable the automated ranking of various LLMconfigurations and to
facilitate the identification of thosemost aligned with expert-level guidance.

We propose expert-of-experts verification and alignment (EVAL)
framework, which comprises two complementary tasks operating at dif-
ferent levels of evaluation. The first task provides a scalable solution at the
model level, using unsupervised embeddings to automatically evaluate and
rank different LLM configurations based on how closely their responses
align with expert-generated answers. The unsupervised embedding
approach works by converting both LLM outputs and expert answers into
mathematical representations (vectors), allowing semantic similarity com-
parison without requiring manual labeling or supervision. These vector
representations capture the meaning of text in high-dimensional space,
where distance metrics quantify the degree of alignment between LLM and
expert responses. The second task operates at the individual answer level,
using a rewardmodel trained on expert-graded LLM responses to score and
filter out inaccurate outputs automatically across multiple temperature
thresholds, thus accounting for different levels of randomness and diversity.
This two-level approach allows us to both identify the most reliable LLM
configurations but also ensure that individual outputs meet clinical quality
standards.

To illustrate the utility of EVAL, we applied the framework to the
management of upper gastrointestinal bleeding (UGIB), a common and
costly condition. UGIB affects up to 116 per 100,00017 individuals and
carries a mortality rate of up to 11%18. Robust national and international
clinical guidelines provide evidence-based recommendations for manage-
ment across the pre-endoscopic, endoscopic, andpost-endoscopic phases of
clinical care19–24. Adherence to guideline-based recommendations is variable
and low despite efforts to knowledge dissemination, with an estimated
adherence rate that ranged from 14.3% to 95.7% across 20 guideline-
recommended measures and only 30% of practitioners ever having used a
guideline-recommended risk stratification score25–27. Adherence to UGIB
guideline recommendations is poor in clinical practice, and there is potential
for LLMs to serve as a clinical decision support to improve guideline
implementation. The implementationof LLMsas a clinical decision support
tool27,28. Our study benchmarks the EVAL framework across three datasets:
13 expert-generated questions on UGIB, 40 multiple-choice questions
(MCQs) derived from the self-assessments test of the American College of
Gastroenterology (ACG), and 117 real-world questions asked by physician
trainees to LLMs in simulation scenarios on UGIB diagnosis and
management.

In summary, The EVAL framework aims to provide a scalable solution
to enhance AI safety for provider-facing LLMs by simultaneously identi-
fying robust model configurations and verifying that individual responses
align with established, guideline-based recommendations. This dual
approach ultimately aims to improve the quality and safety of LLM-
enhanced clinical decision support.

Results
Model Ranking by Similarity Metrics
In terms ofmodel rankingby similaritymetrics (Table 1), Claude-3-Opus in
the baseline configuration achieved the best performance in both Term
Frequency-Inverse Document Frequency (TF-IDF) (0.252 ± 0.002) and
Sentence Transformers (0.579 ± 0.003), while SFT-GPT-4o demonstrated
the highest similarity using the Fine-TunedContextualized Late Interaction
over BERT (ColBERT) scoring (0.699 ± 0.012). With ranking by TF-IDF
metric, Claude-3-Opus baseline showed statistically significant differences
(p < 0.01) compared to all othermodels and configurations,with onlyRAG-
GPT-o1 showing a less stringent statistical significance (p < 0.05). For the
Sentence Transformers metric, Claude-3-Opus baseline showed no statis-
tically significant differences when compared to its RAG configuration
(0.578 ± 0.003) and SFT-GPT-4o (0.554 ± 0.003), while all other model
configurations demonstrated statistically significant differences (p < 0.01).
The Fine-Tuned ColBERT evaluation revealed no statistically significant
differences between the best model (i.e., SFT-GPT-4o) and several highly
similar configurations such as baseline GPT-o1 (0.683 ± 0.009), baseline
GPT-4o (0.669 ± 0.011), RAG-Claude-3-Opus (0.680 ± 0.006), RAG-
GPT-4 (0.679 ± 0.006), RAG-GPT-o1 (0.687 ± 0.004), SFT-GPT 3.5
(0.673 ± 0.009), SFT-GPT-4 (0.691 ± 0.014), RAG-SFT-GPT4 (0.683 ±
0.010) and RAG-SFT-GPT4o (0.681 ± 0.015).

It is important to note that similarity metrics, particularly Fine-Tuned
ColBERT, are primarily designed as ranking tools, with their raw output
values mainly indicating relative performance rather than absolute scores.
Given Fine-Tuned ColBERT’s superior correlation with human evaluation
(as demonstrated later in the manuscript) compared to TF-IDF and Sen-
tence Transformers, we focused our visualization efforts on ColBERT
scores. To enhance visualization clarity while preserving the ranking
information, we applied a logit transformation to the Fine-TunedColBERT
scores inFig. 1, as this transformationmaintains themonotonic relationship
between scores while providing better visual differentiation between high-
performing models.

Model ranking by human grading and multiple-choice questions
Regarding human evaluation metrics, SFT-GPT-4o achieved the high-
est performance in both expert-generated questions (88.5%) and ACG-
MCQ evaluation (87.5%), while RAG-GPT-o1 demonstrated superior
performance in real-world questions (88.0%) as reported in Table 1 and
depicted in Fig. 2. For expert-generated questions, no statistically sig-
nificant differences were observed between the accuracy of the best
model and RAG-GPT-4 (84.6%), RAG-GPT-4o (87.7%), RAG-Claude-
3-Opus (86.2%), SFT-GPT-3.5 (80.8%), SFT-GPT-4 (84.6%), RAG-
SFT-GPT-4 (81.5%), and RAG-SFT-GT4o (83.1%). At the same time
the best model for expert-generated questions showed statistically sig-
nificant higher accuracy when compared to RAG-GPT-o1 (76.9%,
p < 0.05) and with all the other model configurations demonstrated
statistically significant differences (p < 0.01). Similarly, in ACG-MCQ
evaluation, no statistically significant differences were observed
between the accuracy of the best model and baseline GPT4o (72.5%),
RAG-GPT-4 (80%), RAG-GPT-4o (82.5%), RAG-Claude-3-Opus
(75%), RAG-GPT-o1 (77.5%), SFT-GPT-3.5 (72.5%), SFT-GPT-4
(85%), RAG-SFT-GPT-4 (80%), and RAG-SFT-GT4o (82.5%). At the
same time the best model for ACG-MCQs showed statistically sig-
nificant higher accuracy when compared to baseline Claude-3-Opus
(65%, p < 0.05), baseline GPT-o1 (60%, p < 0.05), and with all the other
model configurations demonstrated statistically significant differences
(p < 0.01). For real-world questions, no statistically significant differ-
ences were observed between the accuracy of the best model and RAG-
GPT-4 (80.3%), RAG-GPT-4o (82.1%), SFT-GPT-4 (82.9%), SFT-GPT-
4o (84.6%), RAG-SFT-GPT-4 (81.2%), and RAG-SFT-GPT4o (82.1%).
The best model for real-world questions showed statistically significant
higher accuracy when compared to RAG-Claude-3-Opus (76.9%,
p < 0.05), with all the other model configurations demonstrated statis-
tically significant differences (p < 0.01).
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Alignment between similarity metrics and human performance
To assess which similarity metrics best reflected model performance
across our three validation datasets, we explored the correlation between
their scores and the accuracy by human grading and performance on
ACG-MCQs using Spearman correlation coefficients. The Fine-Tuned
ColBERT metric demonstrated the strongest correlation with human
evaluation across all three datasets, showing high correlation coefficients
with expert-generated questions (ρ = 0.91, p < 0.001), ACG-MCQs per-
formance (ρ = 0.86, p < 0.001), and real-world questions (ρ = 0.81,
p < 0.001). Sentence Transformers showed moderate correlations with
expert-generated questions (ρ = 0.59, p < 0.01), ACG-MCQ perfor-
mance (ρ = 0.47, p < 0.05), and real-world questions (ρ = 0.44, p < 0.05).
TF-IDF demonstrated the weakest correlation, with a marginally sig-
nificant correlation only with expert-generated questions (ρ = 0.38,
p < 0.05), while correlations with ACG-MCQ performance (ρ = 0.30,

p = 0.13) and real-world questions (ρ = 0.28, p = 0.16) were not statisti-
cally significant.

Evaluation of reward model alignment to human-grading
The human-grading evaluation accuracy for eachmodel used in the reward
model training and validation across multiple temperature threshold is
reported in Supplementary Fig. 1. The reward model produced a true label
(i.e., the same grade producedbyhumangraders) in 87.9%of cases across all
temperature values for RAG-GPT-4. In the two regimens where the LLM
output quality is easy to distinguish (i.e., lower temperatures with more
deterministic outcomes vs. higher temperatures with less deterministic
outcomes) the rewardmodel produced true labels in 90.0% (positive regime,
temperature < 1.2) and 99.2% (negative regime, temperature > 1.6) of cases
(Fig. 3). In the mixed regime (i.e., temperature values between 1.2 and 1.6),
where the distinction between good and bad LLM-generated answers may

Table 1 | Model Ranking Comparison across similarity-based metrics, human grading, and performance of multiple-choice
questions (MCQs) dataset

Model
Configuration

Ranking by Similarity Metrics Ranking by Human Grading and Multiple-Choice Questions

TF-IDF
Average (±SD)

Sentence Transformers
Average (±SD)

Fine-Tuned Colbert
Score
Average (±SD)

Expert-Generated
Questions N (%)

ACG-MCQs
Performance N (%)

Real-World
Questions N (%)

Baseline configuration

Llama-2-7B 0.210 (0.002)** 0.514 (0.003)** 0.603 (0.010)** 35 (26.9%)** 8 (20%)** 39 (33.3%)**

Llama-2-13B 0.210 (0.002)** 0.525 (0.002)** 0.633 (0.013)** 49 (37.7%)** 12 (30%)** 41 (35.0%)**

Llama-2-70B 0.228 (0.002)** 0.547 (0.004)** 0.633 (0.007)** 65 (50.0%)** 13 (32.5%)** 45 (38.5%)**

Mistral-7B 0.199 (0.002)** 0.543 (0.003)** 0.634 (0.008)** 66 (50.8%)** 16 (40%)** 53 (45.3%)**

Claude-3-Opus 0.252 (0.002)BM 0.579 (0.003)BM 0.672 (0.007)* 95 (73.1%)** 26 (65%)* 80 (68.4%)**

GPT-3.5 0.199 (0.001)** 0.499 (0.001)** 0.639 (0.009)** 66 (50.8%)** 21 (52.5%)** 73 (62.4%)**

GPT-4 0.192 (0.001)** 0.499 (0.001)** 0.642 (0.007)** 82 (63.1%)** 22 (55%)** 82 (70.1%)**

GPT-4o 0.242 (0.002)** 0.559 (0.001)** 0.669 (0.011)NS 90 (69.2%)** 29 (72.5%)NS 84 (71.8%)**

GPT-o1 0.221 (0.004)** 0.555 (0.005)** 0.683 (0.009)NS 95 (73.1%)** 24 (60%)* 87 (74.4%)*

Retrieval augmented generation configuration

Llama-2-7B 0.223 (0.002)** 0.555 (0.003)** 0.648 (0.009)** 80 (61.5%)** 11 (27.5%)** 45 (38.5%)**

Llama-2-13B 0.218 (0.002)** 0.540 (0.003)** 0.662 (0.011)* 91 (70.1%)** 23 (57.5%)** 45 (38.5%)**

Llama-2-70B 0.232 (0.001)** 0.565 (0.003)** 0.662 (0.008)** 88 (67.7%)** 22 (55%)** 46 (39.3%)**

Mistral-7B 0.223 (0.001)** 0.544 (0.002)** 0.660 (0.008)** 88 (67.7%)** 23 (57.5%)** 52 (44.4%)**

Claude-3-Opus 0.243 (0.003)** 0.578 (0.003)NS 0.680 (0.006)NS 112 (86.2%)NS 30 (75%)NS 90 (76.9%)*

GPT-3.5 0.199 (0.002)** 0.499 (0.001)** 0.653 (0.007)** 83 (63.8%)** 18 (45%)** 61 (51.3%)**

GPT-4 0.225 (0.001)** 0.559 (0.001)** 0.679 (0.006)NS 110 (84.6%)NS 32 (80%)NS 94 (80.3%)NS

GPT-4o 0.234 (0.002)** 0.571 (0.002)** 0.670 (0.006)* 114 (87.7%)NS 33 (82.5%)NS 96 (82.1%)NS

GPT-o1 0.239 (0.004)* 0.563 (0.004)** 0.687 (0.004)NS 100 (76.9%)* 31 (77.5%)NS 103 (88.0%)BM

Supervised fine-tuning configuration

Llama-2-7B 0.216 (0.001)** 0.525 (0.002)** 0.630 (0.011)** 27 (20.8%)** 18 (45%)** 28 (23.9%)**

Llama-2-13B 0.223 (0.001)** 0.529 (0.002)** 0.646 (0.016)** 43 (33.1%)** 13 (32.5%)** 31 (26.5%)**

Llama-2-70B 0.226 (0.002)** 0.545 (0.001)** 0.649 (0.007)** 79 (60.8%)** 16 (40%)** 85 (72.6%)**

Mistral-7B 0.197 (0.003)** 0.527 (0.002)** 0.634 (0.008)* 66 (50.8%)** 17 (42.5%)** 37 (31.6%)**

GPT-3.5 0.223 (0.002)** 0.559 (0.002)** 0.673 (0.009)NS 105 (80.8%)NS 29 (72.5%)NS 79 (59.8%)**

GPT-4 0.215 (0.002)** 0.540 (0.003)** 0.691 (0.014)NS 110 (84.6%)NS 34 (85%)NS 97 (82.9%)NS

GPT-4o 0.219 (0.003)** 0.554 (0.003)NS 0.699 (0.012)BM 115 (88.5%)BM 35 (87.5%)BM 99 (84.6%)NS

Retrieval augmented generation and supervised fine-tuning configuration

GPT-4 0.217 (0.003)** 0.538 (0.006)** 0.683 (0.010)NS 106 (81.5%)NS 32 (80%)NS 95 (81.2%)NS

GPT-4o 0.213 (0.003)** 0.535 (0.004)** 0.681 (0.015)NS 108 (83.1%)NS 33 (82.5%)NS 96 (82.1%)NS

This table compares theperformanceof different LLMconfigurationsusing three evaluationapproaches: automatedsimilaritymetrics (TF-IDF, SentenceTransformers, andColBERTscores), humanexpert
validation (expert-generated and real-world questions), and standardized testing (ACG-MCQs). Models are evaluated in four configurations (Baseline, RAG, SFT, and Combined RAG-SFT), with statistical
significance noted as BM (BestModel), NS (Not Significant frombest), *p < 0.05, **p < 0.01. Higher scores indicate better performance across all metrics. Abbreviations: LLM Large LanguageModel,RAG
Retrieval Augmented Generation, SFT Supervised Fine-Tuning, ACG-MCQs American College of Gastroenterology Multiple Choice Questions, TF-IDF Term Frequency-Inverse Document Frequency,
ColBERT Contextualized Late Interaction over BERT.
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result in less obvious and the classification task results less performant, the
rewardmodel produced true labels in 76.2%of cases. For temperatures < 1.2
(positive regime) the reward model provides true labels for 90% of correct
answers and 67% of inaccurate answers. For temperatures > 1.6 (negative
regime), the rewardmodel provides true labels for 94.1% of correct answers
and 100% of inaccurate answers. In the mixed regime (temperature values
between 1.2 and 1.6), the reward model produced true labels for 68.8% of
correct answers and 97.1% of inaccurate answers.

In the external validation using the SFT-GPT-4o model, the reward
model produced a true label in 81.8% of cases across all temperature values,
with slightly different performance in the positive regimewhen compared to
the internal validation. In particular, in the positive regime (temperature <
1.2), it achieved 72.6% accuracy for correct answers and 89.3% for inaccu-
rate answers. In the negative regime (temperature > 1.6), it showed a
similarly strong performance with 90.9% accuracy for correct answers and
99.6% for inaccurate answers. However, in the mixed regime (temperature
values between 1.2 and 1.6), true labels were achieved in 75.3% of correct
answers and 96.4% of inaccurate answers.

We performed a sensitivity analysis to detect the different levels of
alignment for RAG-GPT-4 and SFT-GPT-4o across all temperature
thresholds and alignment with human-grading on real-world questions for
each model are reported in Supplementary Table 1 and Supplementary
Table 2 respectively.

Rejection sampling across multiple temperature thresholds
Rejection sampling was employed to enhance the accuracy of LLM
responses by leveraging the alignment observed in the reward model ana-
lysis. To evaluate its effectiveness, we compared human-graded accuracy
with and without rejection sampling, using K = 5 candidate responses for
each query. Across all regimes, including a large portion of temperature that
LLM model already has a high accuracy, rejection sampling improves the
overall accuracy by 9.39% in answers produced by RAG-GPT-4 and 8.36%
in answers produced by SFT-GPT-4o (Table 2). The improvement in
accuracy produced by the rejection sampling of the positive regime was
1.14% for answers produced by RAG-GPT-4 and 1.12% for answers pro-
duced by SFT-GPT-4o. In the mixed regime (temperature 1.2–1.6), where

classification is more challenging, rejection sampling provides a significant
improvement of 7.65% for RAG-GPT-4 (increasing accuracy from
51.0%–54.9%) and of 23.60% for SFT-GPT-4o (increasing accuracy from
64.4%–79.6%). In the negative regime (temperature > 1.6), rejection sam-
pling drastically improves accuracy by 98.35% (increasing accuracy from
12.1% to 24.0%) in answers generated by RAG-GPT-4 and by 121.43%
(increasing accuracy from4.2% to 9.3%) in answers generated by SFT-GPT-
4o. These findings highlight the ability of rejection sampling to improve
performance in more difficult regimes, particularly at higher temperatures
where the model’s baseline accuracy is low.

Discussion
We present EVAL, a novel framework that leverages expert-of-expert free
text responses to identify the best-performing LLM configurations and a
trained reward model to identify high-quality responses from several LLM
configurations. We demonstratebenchmark performance for accuracy
across an expert-generateddataset, amultiple-choice questiondataset, and a
real-world question dataset focused on the management of UGIB.

AI safety in deploying LLMs in clinical medicine can encompassmany
categories, but for clinical practice impacts most practically the task of
diagnosis using published clinical cases29–31 and the task of management as
measured by performance onmultiple-choice questions featured in clinical
exams32,33. LLM configurations used to retrieve information from clinical
guidelines for clinical decision support have focused on simple retrieval34–36,
but strategies to optimize the use of LLMs for the task of clinical decision
support are important inmitigating the risk of using these systems in clinical
care. Our approach is rooted in the paradigm of evidence-based medicine
and can be used across multiple domains to improve the performance of
LLMs when deployed for clinical decision support in high-risk, time-
constrained medical settings.

Our study is the first to use unsupervised embeddings and reward
models to select the best performingLLMconfigurations at themodel and at
the answer level. Unsupervised similarity metrics based on a high-quality
comparator (i.e., expert-of-experts golden labels) using the embedding
representation, along with pre-trained reward models to screen for high-
quality LLM responses, demonstrate potential as a less resource-intensive

Fig. 1 | Model performance ranking based on Fine-Tuned ColBERT similarity
scores. The figure shows the ranking of different LLM configurations based on their
similarity to expert-generated responses, as measured by Fine-Tuned ColBERT
scores after logit transformation. Models are grouped by configuration type

(Baseline, RAG, SFT, and SFT-RAG). The logit transformation was applied to
enhance visualization while maintaining the relative ranking. Abbreviations: RAG
Retrieval Augmented Generation, SFT Supervised Fine-Tuning, ColBERT Con-
textualized Late Interaction over BERT.
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Fig. 2 | Model ranking according to human grading and performance on ACG-
MCQs. The figure presents model performance rankings across three different
human evaluation approaches: a Expert-generated questions; b ACG-MCQs per-
formance; and (c) Real-world questions. Models are grouped by configuration type
(Baseline, RAG, SFT, and SFT+ RAG), with advanced GPT models consistently

performing well across all evaluation metrics. Notably, enhanced configurations
(RAG, SFT, SFT+ RAG) generally outperformed baseline models. Abbreviations:
ACG-MCQs American College of Gastroenterology Multiple Choice Questions,
RAG Retrieval Augmented Generation, SFT Supervised Fine-Tuning.
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approach to screen LLM configurations. We believe that this approach has
value for healthcare systems, clinical providers, andpatient advocacy groups
to choose wisely in an increasingly crowded space of different LLMs with
various customizations. When medical entities (corporate, hospital, or
individual teams) need to choose between different model configurations, a
scalable method that does not require manual human-grading can help to
save time and mitigate risks when thinking through the implementation of
LLMs for clinical decision-making. We tested 27 different model

configurations across three different datasets. Our findings highlight that
RAG, SFT, and combined approaches can significantly improve perfor-
mance over baseline LLM configurations, which is consistent with the
results of other studies testing different LLM configurations in healthcare
applications12,34–36. However, we note that there was similar accuracy with
either RAGor SFT amongmultiple proprietarymodels. Interestingly, while
one might expect that combining RAG and SFT would yield superior per-
formance compared to either approach alone, our results indicate this was

Fig. 3 | Confusionmatrix comparing labels by rewardmodel and human grading.
The two confusion matrices compare labels according to human grading vs. labels
provided by the reward model in the three regimes (i.e., temperature ranges).
a Internal validation of the rewardmodel with answers generated by the RAG-GPT-
4 configuration; b External validation of the reward model with answers generated

by SFT-GPT-4o, whichwas the best model selected according to human grading and
embedding similarity metrics. The reward model was able to detect most of the
inaccurate answers in the context of higher temperature settings. Abbreviations:
RAG Retrieval Augmented Generation; SFT Supervised Fine-Tuning.

Table 2 | Rejection Sampling for automated grading

Settings Overall Temperature 0–2 Positive Regime
Temperature <1.2

Mixed Regime
Temperature 1.2–1.6

Negative Regime
Temperature >1.6

RAG-GPT-4 (Internal validation)

Baseline 0.511 0.880 0.510 0.121

With Rejection Sampling 0.559 0.890 0.549 0.240

Improvement (%) 9.39% 1.14% 7.65% 98.35%

SFT-GPT-4o (External validation)

Baseline 0.529 0.893 0.650 0.043

With Rejection Sampling 0.598 0.903 0.796 0.093

Improvement (%) 8.36% 1.12% 23.60% 121.43%

This table illustrates the impact of implementing rejection sampling (with K = 5) on the accuracy of the reward model for automated grading across different temperature regimes.
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not a consistent pattern. This observationmay be explained by information
redundancy—when the domain-specific knowledgeprovided throughRAG
overlaps substantiallywith the knowledge already encoded in thefine-tuned
model parameters through SFT, the marginal benefit of combining both
approaches diminishes. Additionally, SFT induces parametric changes that
can alter the model’s interpretation mechanisms for specialized medical
text, potentially creating interference when subsequently processing
retrieved external context from RAG. This phenomenon resembles cata-
strophic forgetting37 in continual learning scenarios, where fine-tuning on
one objective can degrade performance on previously learned tasks. The
optimal configuration appears to depend on which approach better aligns
with the specific knowledge representation requirements of a given clinical
domain and question type. In addition to identifying the LLMconfiguration
with the highest quality responses, the reward model may be useful in
mitigating risk across LLM hyperparameter settings such as temperature.
Higher temperatures could be beneficial for reasoning over complex clinical
cases38, but also lead to higher risk of more hallucinations, potentially
deviating from guideline recommendations in harmful ways. Our pre-
liminary findings suggest that a reward model could be used to reject
inaccurate responses at higher temperatures (>1.2), leading to a partial
rescue for clinical accuracy.

Finally, we present a set of UGIB databases with labels and a bench-
markperformanceof our approach that canbeused to test other approaches
to evaluating LLM configurations for accuracy in the high-stakes realm of
clinical decision support for evidence-based medical practice. We believe
this provides a valuable and novel contribution towards the field of LLM
safety testing in medicine.

The real-world efficacy of EVAL is demonstrated with the improve-
ment in accuracy over the baseline model in a real-world question dataset
generated by clinical providers within medical simulation for the manage-
ment of acute upper gastrointestinal bleeding. No other study, to our
knowledge, has evaluated available LLM configurations on real clinician
questions in the context of clinical decision making. EVAL also has the
potential to automate comparisons of LLMs and identify the optimal con-
figurations for accuracy. EVALusesanunsupervised embedding tomeasure
similarity to expert-of-expert free text responses confirmed with multiple-
choice question dataset, and then leverages a trained reward model to
provide automated estimates of LLM output accuracy. The trained reward
model can also be used to identify optimal temperature thresholds and
improve the performance at other temperature thresholds with rejection
sampling.Our results in the real-worldquestiondataset suggests that despite
training reward models on high-quality data, a gap in accuracy persists
between reward models and human-graded accuracy.

Limitationsof our approach include the following:we require apooling
of free text responses from expert physicians and existence of high-quality
clinical guidelines, our approach may not be able to fully account for het-
erogeneity across different guidelines, and the real-world questions were
derived from real physicians in simulation workflows rather than actual
clinicalworkflow.Wepresent anarrowuse case to showcaseour framework,
focusing only on the management of patients with UGIB. Nonetheless, our
approach is flexible and can be readily applied to other conditions that have
both expert responses and associated clinical guideline text. Another con-
sideration is our use of United States clinical guidelines for training and
European/Asia-Pacific guidelines for testing, alignedwith our expert panel’s
geographical distribution. While this approach validates cross-system
generalizability, it may introduce subtle biases, though UGIB management
principles remain largely consistent across international guidelines.
Regarding broader generalizability, we cannot definitively claim the reward
model wouldmaintain performance on entirely different clinical questions.
Different medical conditions may present unique challenges: less standar-
dized guidelines, more complex decision trees, or nuanced clinical judg-
ments that areharder to evaluate systematically.Additionally, the real-world
questions were generated by providers within medical simulation on stan-
dardized patient cases and only approximate live clinical care. While
medical simulation iswell-established as an environment for testingmedical

technologies, particularly those with potential risks to patient safety, real-
world questions when deployed in clinical practice are the real test for LLM
performance. We do not directly capture the feedback of clinical provider
users to the LLM output, which may inform how the output may influence
their clinical decision within the clinical scenario. Future studies should
consider mechanisms to collect provider feedback so that their expressed
preference for LLMresponses andquantify downstream impact of how they
were used in their clinical decision-making.

Our findings suggest that AI safety can be optimized within an
evidence-based medicine framework, where clinical guidelines and expert
guidance can be codified to evaluate LLM outputs and reject inaccuracies.
Furtherwork to scaleAI safety solutions across otherdomainsofmedicine is
necessary to ensure that answers to high-stakes medical issues are factually
accurate, reliable, and reflect the current standard of care.

Methods
Large language model configurations
We tested the following large language model architectures based on
availability for clinical use: GPT-3.5-Turbo, GPT-4-Turbo, GPT-4o, GPT-
o1-preview, Claude-3-Opus, LLaMA-2-7B, LLaMA-2-13B, LLaMA-2-70B,
and Mistral-7B. We tested models at the zero-shot baseline, with Retrieval
Augmented Generation (RAG) using clinical guidelines, after Supervised
Fine-Tuning (SFT) using clinical guidelines, and RAG with a fine-tuned
model. Of note, we could not fine-tune GPT-o1 and Claude-3-Opus due to
company restrictions on accessing model weights.

To create the external knowledge dataset used for RAG and SFT, we
collected six guideline documents for UGIB (related to variceal and non-
variceal bleeding) created by major Northern American, European, and
Asia-Pacific societies19–24. Following our previously published protocol12, we
reformatted the original documents from raw PDF formats to ones suitable
for LLMs, as described elsewhere12. This involved converting all informa-
tion, both text and non-text, into a textual format, creating a coherent
structure across all guidelines, anddividing eachdocument into threemacro
sections: pre-endoscopic, endoscopic, and post-endoscopic management.

For retrieval augmented generation (RAG)39, the reformatted guide-
lineswere integrated according to eachmodel’s contextwindow size.RAG is
a technique that combines retrieval of relevant documents with generation,
enabling the model to produce more accurate and contextually appropriate
responses. For example,OpenAI’s GPT-3.5-turbo can take an input context
of up to 4096 tokens, roughly equal to 800 English words. Due to this
constraint, each clinical guideline was split into smaller sections, or
“chunks,”of text at the paragraph level.When a user inputs a query toRAG-
GPT-3.5-Turbo, itfirst searches themost relevant text among the chunks by
similarity search using cosine similarity and selects the chunk with the
highest similarity. The same chunking strategy was used for LLaMA-2-7B,
LLaMA-2-13B, LLaMA-2-70B, and Mistral-7B. On the other hand,
OpenAI’s GPT-4-Turbo, GPT-4o, and GPT-o1-preview have a context
window of up to 128000 tokens, whereas Anthropic’s Claude-3-Opus has a
context window of up to 200,000 tokens allowing for chunking at the
document level. In these cases, we provided three chunks: one containing
theNorthernAmericanGuidelines, onewith EuropeanGuidelines, and one
with Asia-Pacific Guidelines.

Supervised fine-tuning was performed using low-rank adaptation
(LoRA)40,41, which updates a small fraction of the model’s parameters, sig-
nificantly reducing the computational cost andmemory usage compared to
traditionalfine-tuningmethods.We employed LoRA tofine-tuneGPT-3.5-
Turbo, GPT-4-Turbo, GPT-4o, Llama-2-7B, Llama-2-13B, Llama-2-70B,
and Mistral-2-7B on the reformatted clinical guidelines. We performed
human-guided chunking at the paragraph level, obtaining 96 chunks in
total. Train/test split was not performed randomly but was designed to
ensure complete information about each management part in training to
avoid loss of key information. We used the United States clinical guidelines
as the training dataset, and the European/Asia-Pacific guidelines as the
testing dataset. Technical details related to the fine-tuning process are
reported in the Supplementary Materials.
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Benchmark datasets and human-grading
To ensure methodological rigor in our framework evaluation across mul-
tiple datasets, we implemented a standardized documentation structure to
address the following four items: the question dataset (which encompasses
the methodological approach to dataset construction and question devel-
opment), the answer generation process (which delineates the systematic
implementation of LLMs for response generation), the answer review cri-
teria (which explicates the comprehensive evaluation protocol employed for
response assessment), and the task (which specifies the precise validation
objective within our framework’s evaluation schema). Each dataset is sys-
tematically analyzed through these fourmethodological dimensions. Before
proceeding, it is important to highlight that human-evaluation of the
accuracy of LLM-generated answers is based on the following criteria: (1)
the answer was entirely accurate and free from any inaccuracies, (2) the
answer directly addressed the question posed, and (3) the answer was
comprehensive, providing a complete response that covered all critical
aspects of the question.

The first benchmarking dataset was the expert-generated UGIB
questions. We created a 13-question expert-generated dataset written in
conjunction with the expert-of-experts who were senior authors (in North
America, Europe, and Asia-Pacific regions) of clinical guidelines for UGIB
(L.L., A.B., G.G.T., I.G., J.S.) focused on areas of high value and relevance to
the care of patients with UGIB. These key topics encompassed the full
spectrum of UGIB care, from initial risk assessment and pre-endoscopic
management through to post-procedural care (e.g., risk stratification,
transfusion thresholds, or resuming of anticoagulant medication). The

questions were separated into two types of question-related tasks: direct
content retrieval (n = 9) and analysis of clinical context (n = 4) in the formof
clinical cases (Table 3). These cases were specifically designed to test the
ability to integrate multiple guideline recommendations in realistic clinical
contexts.

We also invited those five expert-of-experts to independently provided
free-text answers (i.e., “golden-labels”) to each question, collected on the
Qualtrics Platform. Each answer was stored in a separate dataset, with the
number of characters and word for each question. Each expert answer is
reported in the Supplementary Files.

Using these expert-curated questions, we also generated responses
using all LLM configurations at a temperature setting of 0.842, producing ten
answers per question for each configuration for a total of 3510 responses.
These same questions were previously used to collect responses from five
different model configurations (i.e., baseline PaLM, baseline GPT-3-5,
baseline GPT-4, RAG-GPT-3.5, RAG-GPT-4) across multiple temperature
thresholds (0.0 to 2.0, with 0.2 increments), creating a dataset of 8580
answers.We generated an additional dataset (n = 1430) using only the best-
performing model configuration, following the same temperature range
pattern. In all cases, through heuristic prompt engineering, we constrained
LLM response lengths to match the maximum word count of the corre-
sponding expert answers, ensuring comparable response formats.

Two independent gastroenterologists blindly evaluated the accuracy of
the responses generated at temperature 0.8, comparing themagainst clinical
guidelines and expert answers. In cases of disagreement, a third expert
reviewer served as a tiebreaker (disagreement requiring a tiebreaker

Table 3 | List of Expert-Generated Questions for Upper Gastrointestinal Bleeding Management

Direct content retrieval

1 Which risk stratification score should I use to assess for very-low-risk patients with UGIB, and what threshold should I use to discharge them from the ED?

2 At what hemoglobin level should I transfuse red blood cells for patients presenting with acute UGIB?

3 Should I use erythromycin as a pre-endoscopic therapy?

4 How should I use epinephrine in endoscopic therapy for patients with NVUGIB?

5 When should I consider pre-emptive TIPS therapy for patients with acute UGIB from portal hypertensive bleeding?

6 How should I manage a patient with rebleeding after initial endoscopic therapy for a bleeding ulcer (Forrest IIa, treated with epinephrine and hemoclips)?

7 How should I manage a patient who had rebleeding after initial endoscopic therapy for a bleeding ulcer, had repeat endoscopic therapy and now is bleeding again?
Should I recommend surgery or interventional radiology and why?

8 Should Proton Pump Inhibitor therapy be given to all patients presenting with UGIB even before endoscopy?

9 What is the best time for endoscopy for patients with UGIB? Does this change with variceal bleeding?

Analysis of clinical context

1 A 30 year-old woman with no significant past medical history presents to the emergency department with an episode of melena. She reports some epigastric
discomfort for the past week but denies any history of peptic ulcer disease, alcohol abuse, or use of NSAIDs. She denies any dizziness, weakness, chest pain, or
shortness of breath. Her vital signs are within normal limits: blood pressure 120/80mmHg, pulse 70 bpm, respiratory rate 16 breaths per minute, and temperature
98.6 °F. On physical examination, she appears well, abdomen is soft and non-tender, with no signs of peritoneal irritation or organomegaly. Her initial labs show a
hemoglobin of 12 g/dL, normal liver function tests, andnormal coagulationprofile. ShehasaGlasgow-Blatchford scoreof 1.Howshould this patient bemanaged in the
first 12 h? Should she undergo red blood cell transfusion or upper endoscopy within 24 h?

2 A 65 year-old man with a history of chronic NSAID use for arthritis presents to the emergency department with sudden onset of melena and mild epigastric pain. He
denies any other symptoms such as dizziness or weakness. His vital signs are stable: blood pressure 130/80mmHg, pulse 75 bpm, respiratory rate 18 breaths per
minute, and temperature 98.4 °F. His initial labs show a hemoglobin of 10 g/dL (down from his baseline of 14 g/dL), normal liver function tests, and normal coagulation
profile. He is admitted for further evaluation and management. The EGD reveals a gastric ulcer with active oozing (Forrest Ib). Endoscopic therapy is successful in
achieving hemostasis using a combination of epinephrine injection and application of hemoclips. Should we prescribe PPI? If so, what is the recommended dosage
and therapy duration?

3 A 75 year-old man with a previous stroke and atrial fibrillation on apixaban presents to the emergency department with hematemesis and melena. His vital signs are
stable: blood pressure 130/80mmHg, pulse 80 bpm (irregular), respiratory rate 18 breaths per minute, and temperature 98.2 °F. His initial labs show a hemoglobin of
9 g/dL (down from his baseline of 14 g/dL), normal liver function tests, and prolonged coagulation profile due to the apixaban. He is admitted for further evaluation and
management. EGD reveals a bleeding duodenal ulcer with active oozing (Forrest Ib). Endoscopic therapy is successful in achieving hemostasis using a combination of
thermal therapy and epinephrine injection. Following the procedure, he is started on a high-dose PPI therapy. How should this patient be managed after endoscopy?
When should we restart apixaban?

4 A 50 year-old womanwith a history of cirrhosis secondary to alcohol use disorder decompensated by ascites presents to the emergency department with acute onset
hematemesis. On exam she has dried blood around her mouth, has icteric sclera, no asterixis and moderate abdominal distension with a fluid wave. She denies any
other symptoms such as dizziness or weakness. Her vital signs are: blood pressure 110/75mmHg, pulse 90 bpm, respiratory rate 16 breaths per minute, and
temperature 98.6 °F. Her initial labs show a hemoglobin of 7.5 g/dL, ALT 45 (IU/L), AST 103 (IU/L), Total Bilirubin 3.4 mg/dL, and Alkaline Phosphatase 137 (IU/L), INR
1.3, and Albumin 2.9 (g/dL). She is admitted for further evaluation and management. How should this patient be managed?

The questions encompass two main categories: direct content retrieval (i.e., extraction of straight-to-the-point information from clinical guidelines text) and analysis of clinical context (i.e., extraction and
interpretation of text from clinical guidelines to answer a clinical case).
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happened in 6.6% of cases). Fourmedical experts independently graded the
responses generated across different temperature thresholds, and majority
voting was used to resolve any disagreements.

The expert responses (“golden labels”) were used to develop and
evaluate different text similarity approaches. The LLM-generated responses
at temperature 0.8 were used as a validation benchmark to evaluate which
similarity technique (fine-tunedColBERT, SentenceTransformers, andTF-
IDF) best correlated with actual model performance. The historical
temperature-varying dataset (n = 8580) served for training and internal
validation, while the additional dataset from the best-performing model
(n = 1430) was used for external validation of the reward model.

The second benchmarking dataset was obtained from the American
College of Gastroenterology (ACG) Multiple-Choice Questions (MCQs).
Among all self-assessment board preparation tests published by the ACG,
only 40 MCQs strictly focused on the management of patients with UGIB.
To establish a benchmark for humanperformance,we calculated the pooled
percentage of correct answers fromprevious practicingACGphysician test-
takers at varying career stages, which averaged 75% for these specific
questions. This dataset cannot be released due to the proprietary nature of
the MCQs.

Each LLM configuration was tested using a zero-shot approach, where
models were instructed to provide only the letter corresponding to the
correct answer among the available choices, without any additional expla-
nation or context. All responses were generated using a temperature set-
ting of 0.8.

Two independent reviewers evaluated the number of correct responses
for each LLMconfiguration, comparing themagainst the reference answers.

This dataset served as a validation benchmark to evaluate which
similarity technique (fine-tunedColBERT, SentenceTransformers, andTF-
IDF) best correlated with actual model performance.

The third benchmarking dataset was obtained from real-world ques-
tions from the Simulation Scenario. In particular, we compiled a dataset of
117 questions from 82 physician trainees across 29 sessions involving
5 standardized UGIB scenarios, conducted in medical simulation settings
between 2023-2024 (IRB protocol number #2000034521). The complete list
of scenarios and related questions is provided in the Supplementary
Materials. The simulation scenarios were designed as part of a clinical trial
evaluating the LLM interface (named GUT-GPT) effectiveness in clinical
decision support, which was conducted in accordance with the ethical
principles outlined in the Declaration of Helsinki43. Each clinical case-
question pair is reported in the Supplementary Files.

Each LLM configuration was tested using a heuristic prompting
approach, necessary due to the unpredictable nature of trainee questions.

The prompts were structured to include complete clinical case analysis,
providing all relevant context (including patient demographics, laboratory
findings, and clinical presentation) and requesting both case-specific
information and management recommendations based on the trainee’s
specific query. This approach allowed the models to address both direct
management questions and requests for case-specific information (e.g., age,
laboratory values, etc.). All responses were generated using a temperature
setting of 0.8.

Two independent gastroenterologists blindly evaluated the accuracy
of responses for each LLM configuration against established clinical
guidelines. In cases of disagreement, a third expert reviewer served as a
tiebreaker (disagreement requiring a tiebreaker happened in 9.5%
of cases).

This dataset served as a validation benchmark to evaluate which
similarity technique (fine-tunedColBERT, SentenceTransformers, andTF-
IDF) best correlated with actual model performance. This dataset was also
used for a supplementary analysis of the reward model alignment with
human-grading.

Unsupervised similarity metrics alignment with expert-of-expert
golden labels
The EVAL framework provides a scalable solution for AI safety in clinical
settings through complementary approaches operating at two levels: at the
model level, using unsupervised embeddings to automatically evaluate and
rank different LLM configurations based on expert-generated answers
(“golden labels”), and at the answer level, employing a reward model to
screen individual responses for accuracy against guideline-based recom-
mendations, as illustrated in Fig. 4.

We evaluated three different similarity metrics to quantify the align-
ment between LLM-generated responses and expert-provided answers:
Contextualized Late Interaction over BERT (ColBERT), Sentence Trans-
formers, and TF-IDF as summarized in Fig. 5.

We used ColBERT44 to quantify the alignment between responses
generated by LLMs and responses by experts (Fig. 5). We chose ColBERT
for its ability to handle the variability of responses within a relatively small
semantic space, and its unique token-level comparison approach. Unlike
traditional embedding methods that create a single vector representing an
entire text (paragraph-level embedding or “early aggregation”), ColBERT
preserves the meaning of individual words or tokens separately and com-
pares these individual representations between texts before making a final
similarity decision (token-level embedding or “late interaction”). This
approach allows for more precise matching of specific clinical terms and
concepts in context, rather than simply comparing overall textmeanings.To

Fig. 4 | EVAL framework summary. The EVAL framework consists of three
interconnected components. The first component comprises the Question Datasets:
expert-generated questions (N = 13), real-world questions (N = 117), and American
College of Gastroenterology questions (N = 40). The second component shows the
LLM configurations, which combines different LLM architectures (Meta’s Llama-2-
7B/13B/70B, Mistral AI’s Mistral-7B, OpenAI’s GPT-3.5/4/4o/o1, and Anthropic’s
Claude-3-Opus) with various configurations (without guidelines as baseline, with

guidelines through Retrieval AugmentedGeneration, Supervised Fine Tuning, and a
combination of Retrieval Augmented Generation and Supervised Fine Tuning).
These LLMs and configurations are then evaluated through three distinct tasks: Task
#1 uses unsupervised similaritymetrics formodel ranking, Task #2 employs a reward
model for automated answer grading, and Task #3 implements automated rejection
sampling to ensure response quality and safety.
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enhance precision in distinguishing between high-quality and lower-quality
responses, we fine-tuned the ColBERT embeddings as follows: for each
expert label, we created triplets consisting of the label itself, a closely
matching paragraph, and a non-matching paragraph from a set of clinical
guidelines. We used Bidirectional Encoder Representations from Trans-
formers (BERT)45 embeddings for each triplet component. The matching
paragraphs were chosen based on their high relevance to the expert label,
while the non-matching paragraphs were selected based on their slight, but
not complete, irrelevance (an example is provided in Supplementary
Table 3). The objective function for fine-tuning maximized the cosine
similarity between the embeddings of the expert label and the matching
paragraph while minimizing the similarity between the expert label and the
non-matching paragraphs. This is achieved using pairwise softmax cross-
entropy loss, which effectively pushes the model to enhance the distinction
between relevant and irrelevant responses regarding embedding proximity.
Fine-tuned ColBERT can produce a more refined separation between

relevant and irrelevant text snippets. To account for the plurality of opinions
frommultiple experts, we evaluated this by calculating the average similarity
score across multiple sets of embeddings generated from a variety of
responses to different questions. This score reflects the overall alignment of
the model’s generated responses with expert-provided answers (details in
Supplementary Materials.) To validate model ranking accuracy, we com-
pared the ranking of the Fine-Tuned Colbert to the accuracy rankings of
each LLM configuration for the expert-generated answer dataset and the
performance on ACG-MCQs. For better visualization of the relative gap
between the Colbert score from different models, we provide the transfor-
mation of first normalizing the Colbert raw score with its maximum
attainable score and then applying the logit function. To showcase the
performance of our Fine-Tuned Colbert method, we provide the following
two baselines: Sentence Transformer46, a common existing LLM-based
method for textual similarity, and TF-IDF47, which is a classical method
based on word and document statistics.

Fig. 5 | Evaluation and validation framework for embedding similarity metrics.
This figure illustrates a comprehensive framework for evaluating the alignment of
responses generated by large language models (LLMs) with expert-defined Golden
Labels (i.e., free-text answers from the experts). a Step 1 - Embedding Similarity
Metrics: Model ranking by comparing the similarity of LLM-generated answers to
the Golden Labels using TF-IDF, Sentence Transformers, and Fine-Tuned Col-
BERT. Fine-tuning was performed to maximize the cosine similarity between the
embeddings of the “golden labels” and their corresponding paragraphs while
minimizing similarity with unrelated paragraphs. This step enhances the model’s
ability to differentiate between relevant and irrelevant responses. b Step 2 - Model
Performance Evaluation: model responses were assessed by human experts, who

graded them for accuracy using expert-generated datasets, real-world questions, and
the American College of Gastroenterology Multiple-Choice Questions (ACG-
MCQs). Models were then ranked based on their performance and accuracy scores.
c Step 3 – Selection of the Best Embedding Similarity Metrics: the average similarity
values for each model were correlated with human performance evaluations using
Spearman’s rank correlation coefficient. This process identified the similarity
metrics with the highest correlation coefficients, underscoring their utility in
assessing model response quality. Abbreviations: ACG-MCQs American College of
Gastroenterology Multiple Choice Questions, TF-IDF Term Frequency-Inverse
Document Frequency, ColBERT Contextualized Late Interaction over BERT.
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For the Sentence Transformers-based similarity metrics, we use the
publicly available pre-trained embedding model, all-MiniLM-L6-v2, from
Sentence Transformer38 to calculate embeddings for answers and then use
the cosine similarity to calculate the score between a pair of answer
embeddings. The model is a pre-trained BERT model further finetuned by
paired sentences optimized for producing high similarity scores for paired
sentences. It’s oftentimes a decent approach for similarity tasks and thus
serves as a well-suited baseline to be compared with our model.

For the TF-IDF-based similarity metric, we follow the standard prac-
tice of calculating the feature vector and then compare feature vectors with
cosine similarity, which falls under the similar framework of our Colbert
method, with the difference beingTF-IDFuses pre-defined statistics instead
of our highly specialized data-driven Colbert. Specifically, for each pair of
LLM output and expert response, we calculate the TF-IDF score by multi-
plying the term frequency and inverse document frequency. In this context,
the document is either one LLM output or one expert answer. The term
frequency, TF, is the number of times a given term appears in the document.
The inverse document frequency, IDF, is the ratio of one plus the total
number of documents dividedbyoneplus the numberof documents having
the term, then take the log and add one again. The several constant value
ones are inplace for normalizing and avoiding thedividedby zero issues and
is the standard common approach48. Lastly, we calculate the cosine simi-
larity between the calculated TF-IDF score to serve as the final
similarity score.

For each similarity method, we performed pairwise t-tests comparing
the highest-scoring model configuration against all other configurations
individually. Similarly, we conducted pairwise t-tests for human-graded
accuracies across the three evaluation sets (expert-generated questions, real-
world questions, and ACG MCQs), comparing the best-performing con-
figuration against all others. For all statistical comparisons, we considered a
two-tailed p-value < 0.05 as statistically significant. To determine which
similarity metric best aligned with human evaluation, we calculated
Spearman rank correlation coefficients between the average scores from
eachmethod and themodel accuracies determined by human grading. This
analysis allowed us to identify which of the three proposedmethods showed
the strongest alignment with both human-graded accuracy and perfor-
mance on ACG MCQs.

Reward model to screen for high-quality LLM responses
One concern of deploying probabilistic large language models in clinical
settings is the presence of hallucinations—seemingly plausible but inaccu-
rate information49. It is not uncommon for models to output answers that
contain factual inaccuracies or “misread” the guidelines, or to be confidently
incorrect in giving factually incorrect information without any indication of
uncertainty. This part of our framework that addresses the issue of hallu-
cinations is represented graphically in Fig. 6.

As a solution to the best model selection, we employ an alternative
approachby training an additional RewardModel to serve as a substitute for

Fig. 6 | Reward model training, testing, and validation and application with
automated rejection sampling. This figure illustrates a two-step framework for
optimizing the accuracy and reliability of responses generated by large language
models (LLMs), with clear stages for reward model training and application.
a Step 1 - Reward Model Training and Validation: previously graded answers from
the expert-generated questions were utilized for training and testing the reward
model. The rewardmodel assigns accuracy scores to the generated answers (e.g., 0.98
for accurate responses and 0.02 for inaccurate ones). Validation was performed
using human-graded answers from the best-performingmodel, determined through

Fine-Tuned ColBERT ranking. This process ensured that the reward model could
accurately evaluate the quality of new question-answer pairs, thereby validating its
grading accuracy. b Step 2 -Application with Automated Rejection Sampling: For
each question, the LLM generates multiple candidate answers (K answers). These
answers are passed through the trained rewardmodel, which assigns accuracy scores
and ranks the responses. The answer with the highest score is selected as the final
output. This filtering mechanism increases the reliability of the model by system-
atically rejecting less accurate responses, thereby ensuring only the most accurate
answers are retained.
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human feedback. A reward model is an LLM tasked with approximating
part of the traditional environment in a reinforcement learning problem.
The reward model takes in text and returns a score. The objective of this
reward model is to assess the level of congruence between a model’s
response and humanpreferences. In simpler terms, a rewardmodel is a type
ofmodel that takes a pair of inputs (prompt and response) and produces an
output in the form of a reward or score. The primary difficulty in con-
structing such a model lies in obtaining a dataset of high quality. The
subjective evaluation of good and bad varies among individuals, making it
unfeasible to quantify. Previous evidence suggests that a dataset containing
between 1000 and 10000high-quality question-answer pairs is sufficient for
training a reward model in moderately complex domains50,51. For larger or
more nuanced topics, a dataset exceeding 50000 pairs may be necessary52.

To train our rewardmodel, whichwe will refer to as the GraderModel
(GM), the LLM receives data in the following format: [Question, Answer,
Score]. The GM’s task is to take a specific [Question, Answer] pair andmap
it to the answer’s score. Scores are provided by a human evaluatorwho reads
the response and assigns it a numerical ranking of 0 or 1 based on the
accuracy. To train this model, we replace the LLM’s traditional head, which
outputs the log probability of the next word, with a value head that predicts
the score of [Question, Answer] pair. Since the answers are classified as
either Good (Score = 1) or Bad (Score = 0), the value head outputs the
probability that the answer is good.Themodel is trainedusing cross entropy
(classification) loss and gradient descent to improve score accuracy.

We used the previously graded dataset (n = 7150) obtained from
multiple LLM configurations (i.e., baseline PaLM, baseline GPT-3-5,
baseline GPT-4, RAG-GPT-3.5 with American Guidelines, RAG-GPT-3.5
with American, European and Asia-Pacific Guidelines) to train the Reward
Model, which was then internally validated to the previous state-of-the-art
model (i.e., RAG-GPT-4 with American, European and Asia-Pacific
Guidelines; n = 1430). The Reward Model performance was externally
validated using the new state-of-the-artmodel (i.e., SFT-GTP-4o; n = 1430)
that was selected according to the highest similarity metrics according to
Fine-Tuned Colbert.

The reward model was trained using Meta’s OPT-350M, a 350
million parameters decoder-only LLM. The use of a smaller RM such as
Meta’s OPT-350M aligns with findings indicating that compact models
are sufficient for tasks where the dataset quality is prioritized over model
scale, as smallermodels demonstrate robust generalization and efficiency
without significant performance trade-offs in preference learning or
alignment tasks, provided they are trained on high-quality, curated
datasets46,53,54. The reward model output is binary: “Good” (Score = 1) or
“Bad” (Score = 0). Alignment to human-experts was evaluated as the
number of true labels (i.e., the number of answers for which the reward
model produced the same label with human grading). The results were
interpreted by breaking down the temperatures into three regimes,
positive (temperature < 1.2), negative (temperature >1.6), and mixed
(temperature between 1.2 and 1.6) according to the model’s graded
performance. These thresholds were chosen such that the positive regime
has over 80% graded accuracy and the negative regime has <20% graded
accuracy. The reward model was then applied to the best model
according to ColBERT ranking and validated the grading accuracy on
this new dataset of question-answer pairs. As a sensitivity analysis, we
reported alignment across all temperature thresholds in the Supple-
mentary Materials. In addition, we tested the alignment of the reward
model with human grading on the real-world questions for all models at
the fixed temperature of 0.8, with results being reported in the Supple-
mentary Materials. The reward model is publicly available on Hugging
Face (https://huggingface.co/ZachariahPang/medical_reward_model).

Automated rejection sampling
Extending the reward model pipeline, we can incorporate the reward
function directly into the answer pipeline by using a rejection sampling
approach. For each question, the LLMagent generatesK candidate answers.
These K answers are evaluated by the reward model, and only the top-

scoring answer is sent forward. This serves as a form of self-filtering,
allowing the reward model to capture and filter out suboptimal answers
before they reach the end user. In this way, rejection sampling enhances the
model’s overall output quality by rescuing from suboptimal answers. To
evaluate the rejection sampling approach, we used the same curated dataset
for reward model alignment described in the previous section. Human-
graded accuracy was compared across multiple K values (1, 3, 5, 7, and 10),
as reported in the Supplementary Table 4. The results demonstrated a
consistent improvement in accuracy with increasing K. However, larger K
values also demand significantly more computational resources. We selec-
ted K = 5 for the main analysis as it provides a practical balance between
computational efficiency and improved accuracy. Detailed trends in accu-
racywith andwithout rejection sampling, as well as the impact of varyingK,
are included in the Supplementary Materials to illustrate the trade-offs and
performance improvements.

Data availability
Expert-generated questions are available in Table 3 of themanuscript, while
expert free-text answers and real-world clinical questions can be found in
the supplementary files.

Code availability
Code can be provided based on personal requests. Please contact the cor-
responding author. The rewardmodel has been uploaded onHugging Face
at the following link: https://huggingface.co/ZachariahPang/medical_
reward_model.
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